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INTRODUCTION

The rapid adoption of machine learning, recommendation systems, and generative 
AI has driven the need for databases capable of efficiently storing and querying high-
dimensional embeddings (vectors). These embeddings represent unstructured data 
such as images, audio, or text in numeric form and enable similarity-based retrieval 
through vector search operations. As database vendors increasingly integrate 
Approximate Nearest Neighbor (ANN) algorithms directly into their data engines, the 
question arises how well these emerging implementations perform in practice.

This report presents a data-driven evaluation of the vector search capabilities  
of Couchbase and MongoDB™. Both systems have recently introduced native  
support for vector indexes and ANN-based search operations but differ  
substantially in their architectural designs and index strategies. The goal of this  
study is to quantify and compare their performance characteristics under controlled 
and reproducible conditions.

The benchmarking experiments were conducted using VectorDBBench, a widely 
adopted open source benchmarking framework for vector databases. All workloads 
were executed on hardware-equivalent configurations, using both standard and 
large-scale datasets (100M and 1B vectors) to assess scalability and performance 
across different recall levels. The benchmark focuses on key performance indicators 
such as throughput (queries per second) and latency at different recall levels.

By systematically comparing these systems across multiple workloads and dataset 
sizes, this study aims to provide a transparent and reproducible analysis of how each 
database performs in real-world vector search scenarios, thereby offering valuable 
insights for practitioners evaluating vector search capabilities.

BACKGROUND

MongoDB
MongoDB is a popular NoSQL database that stores data in JSON-like documents 
organized into collections. Natively, MongoDB comes with its MongoDB query 
language (formerly known as MQL) to run operations against the database. In a 
nutshell, in clustered set ups MongoDB uses a primary-secondary approach where 
all inserts and updates have to go through the primary and are asynchronously 
synced with the secondaries via the oplog. Normally, a MongoDB cluster consists of 
one primary and two secondaries or multiples thereof (sharded setup).

For running vector workloads, users are required to use one or more additional 
search nodes within the clusters. The task of these search nodes is to store a vector 
index. According to MongoDB, scaling out the number of search nodes is the 
primary mechanism to achieve higher throughput.

https://www.mongodb.com/docs/atlas/atlas-vector-search/benchmark/overview/#concurrency
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MongoDB uses the Hierarchical Navigable Small Worlds (HNSW) algorithm and 
index structures for ANN. MongoDB supports two main parameters for creating the 
index. maxEdges defines the maximum number of edges that a node in the index 
can have in the HNSW graph. numEdgeCandidates controls the maximum number 
of nodes to evaluate to find the closest neighbors to connect to a new node. In this 
evaluation, we use the default maxEdges = 32 and numEdgeCandidates = 100. 
The command we use to create the index is shown in the annex of this document.

For querying the database, alongside the number of items to return (limit) and 
the query vector, MongoDB requires the numCandidates parameter. It defines 
the number of nearest neighbors used in the search, allowing a trade off between 
latency and recall.

Couchbase 
Couchbase is a distributed NoSQL database that stores data in JSON documents 
organized into scopes and collections. It uses SQL++ for querying and a shared-
nothing architecture where all nodes can serve reads and writes, with indexing, 
search, and analytics as separate services.

For vector workloads, Couchbase supports vector search which builds on 
Couchbase’s Search Service and provides vector index support. Vector search 
supports the following three index types:

•	 Hyperscale vector indexes – Powered by the Index Service, this is optimized for 
pure vector searches at scale (billions of vectors). They provide high accuracy even 
with large dimensions, a low-memory footprint, and support concurrent inserts 
and queries. 

•	 Composite vector indexes – Combines a vector column with scalar fields. Useful 
when queries need to filter on scalar attributes (e.g., genre, location, supplier) 
before running a similarity search.

•	 Search vector indexes – Introduced in version 7.6, this index can pair vectors 
with full-text search (FTS) and geospatial search. It enables hybrid queries that mix 
semantic, text, and location filters.

In this evaluation, we use Couchbase’s hyperscale vector indexes. Hyperscale vector 
indexes have two major parameters to control index creation: nlist defines the 
number of Voronoi cells the index uses. Each cell is represented by its centroid. For 
our experiments, we use nlist = 200_000. We also use train_list = 100_000 
which controls the number of vectors that Couchbase considers when training for 
centroids in the dataset.

Quantization simplifies vector data so it consumes less space in memory and on disk. 
Couchbase supports product and scalar quantization. It is a parameter to be set for 
index creation. For this report, we use SQ4 scalar quantization which maps floating 
point values to low-dimensional (4-bit) integers.
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When using hyperscale vector indexes, vector search first identifies the centroid 
vector closest to the query vector. It then uses the nprobe parameter to  
search neighboring Voronoi cells closest to the centroid and returns the top k 
number of vectors. In our experiments, we vary nprobe to trade off between latency 
and recall.

METHODOLOGY

The following sections describe the methodology we used for running the 
experiments. This includes the hardware and software configurations, the applied 
benchmark and the selected dataset used for this evaluation.

Hardware Setup
At the time of the evaluation, Couchbase’s vector support was not enabled in 
Couchbase Capella™. For this reason, the Couchbase clusters used in this evaluation 
are deployed on AWS EC2 virtual machines. We use Couchbase Enterprise version 
8.0.0-3444, which is a prerelease. For MongoDB, we rely on MongoDB’s Atlas cloud 
service to ensure we have access to a solid MongoDB installation with all recent 
enterprise features. We use MongoDB version 8.0 for the evaluation at hand.

The hardware setup for both competitors is equivalent. The exact hardware 
specifications are shown in Table 1. In addition to hardware required to run the 
database systems, we use one further AWS EC2 virtual machine of type r7i.8xlarge 
(32 vCores, 256GB RAM) to run the client-side workload.

Table 1. Hardware setup for MongoDB and Couchbase installations

Data Nodes Index/Query 
Nodes Version

MongoDB

M80 replica set Three 
nodes, each with
    32 vCores
    128GB RAM
    750GB storage

4 x high-CPU S80
each with 
   64 vCores
   128GB RAM
   3.2GB NVMe 
storage

v8.0 on MongoDB 
Atlas @AWS

Couchbase

3xm6gd.8xlarge
each with:
  32 Graviton2 cores,
  128GB RAM
  1.9TB NVMe storage

4xc8gd.16xlarge
each with:
   64 Graviton2 
cores,
   128GB RAM
   2x1.9TB NVMe 
storage

Couchbase 
Enterprise 8.0.0-
3444 
@AWS EC2
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In the case of Couchbase, all nodes are deployed in the same availability zone, 
including the machine running the client-side workload. In the case of MongoDB, 
the distribution of cluster nodes across availability zones can neither be controlled 
nor retrieved. Hence, we cannot place the workload machine in a specific availability 
zone. The option for the closest possible placement is to use the same region as the 
database cluster, which is what we did. 

Even though the cluster setup targets hardware equality for both data nodes and 
index nodes, their cloud costs are similar as well: The AWS EC2 infrastructure 
required to run Couchbase costs $19.73224/h. In contrast, MongoDB charges 
$25.33/h for the Atlas cluster that was used.

Workload: VectorDBBench
For measuring vector search performance, a benchmark suite that simulates  
realistic vector search use cases is required. With the rise of vector databases, 
several open source vector search benchmark suites have been released. 
VectorDBBench has gained much traction and is considered the current defacto 
standard in vector database benchmarking. This study uses the VectorDBBench 
version 1.0.6.1

VectorDBBench supports four modes of operation: (i) The capacity mode iteratively 
loads an ever-increasing number of data points/rows into the database until a 
predefined insert timeout threshold is violated. (ii) The search mode evaluates four 
different operation types, each of which produces its own set of metrics/results. The 
majority of operation types query the database content for test vectors in order to 
measure the performance of the database system. Some also measure the quality 
of the results. (iii) The filtering search mode resembles the search mode, but uses 
additional filters (i.e., WHERE clause) in the queries. (iv) Finally, the newly introduced 
streaming mode measures the search performance while maintaining a constant 
insertion workload.

For the evaluation at hand, we make use of the search mode. 

DATASETS
VectorDBBench ships with different datasets that are available to its users out of the 
box. More precisely, the documentation distinguishes between four types of datasets 
ranging from xlarge (up to 100M data points) to small (up to 100K data points).

In addition, VectorDBBench allows users to define a custom dataset as long as  
the data is available in a set of files that follow a specific format and naming  
schema. VectorDBBench uses three different files that all need to be available  
in a Parquet format:

•	 The train.parquet file contains the dataset to be loaded into the database. The 
entries in the file contain an identifier (id) and an embedding (emb) with the latter 
being the actual vector.

1 �At the time of writing, the current version was VectorDBBench 1.0.6.

https://benchant.com/blog/benchmarking-suites#vector-benchmarking
https://github.com/zilliztech/VectorDBBench/
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•	 The test.parquet file contains the (test) queries to issue against the 
database. Each entry comes with an identifier (id) and the search vector (emb). 
VectorDBBench issues all vectors from that file against the database. All datasets 
that ship with VectorDBBench contain 1,000 entries in that file.

•	 The neighbor.parquet file contains the sample solution for each vector. Each 
entry references the query identifier (id) and contains the ids of the vectors 
closest to the search query (neighbors_id) in descending order. For example, 
neighbor_id[0] is closer to the search query than neighbor_id[20].

SEARCH MODE OPERATIONS AND METRICS
The search mode performs four operations types which produce the following 
metrics:

1.	During the load operation, all data from a selected dataset is ingested into the 
database. In all bindings provided by VectorDBBench, this is done with a single 
client (1 thread/process) in batches of a configurable size. For this evaluation, we 
updated the bindings for MongoDB and Couchbase to support parallel inserts. The 
primary metric VectorDBBench reports for the load operation is the load time.

2.	In the optimize operation, the binding is allowed to perform an arbitrary set of 
steps to optimize the database for later query phases. This may include flushing 
segments, (re-)building an index, and other database-specific steps. Obviously, 
different bindings (databases) apply different means of optimization during this 
step. The primary metric VectorDBBench reports for the optimize step is the 
optimization time.

3.	In the concurrent search operation, a certain number of clients (threads/processes) 
concurrently query the database for vectors leading to kNN or ANN queries. The 
number of parallel clients to use is configurable and we vary it in this evaluation. 
Similarly, k, the number of nearest neighbors to be returned by a query can be 
configured. We use the default, k = 10. The primary metric VectorDBBench 
reports for the concurrent query step is throughput (queries per second) per 
concurrency level. Recently, it also began reporting different latency metrics, 
including P95, P99, and average.

4.	In the serial search operation a single process queries the database for a set 
of test vectors. In addition to measuring latencies, this step also evaluates the 
query results and compares them to the ideal result set provided through the 
neighbor.parquet file. For serial search, VectorDBBench reports different 
latency metrics as well as recall, which captures the quality of the results based on 
the comparison with the ideal result set.

Evaluation Datasets
For the evaluation in this paper we use two different datasets: Case A uses the LAION 
100M dataset that ships with VectorDBBench. The dataset contains 100 million data 
points with 768 dimensions each. Case B aims at a larger dataset that contains 1 
billion data points. Unfortunately, VectorDBBench does not ship datasets of this 
size. Their largest dataset category, xlarge, covers datasets with 100 million (100M) 
vectors.
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A dataset with 1 billion elements was released in 2010 by Laurent Amsaleg and 
Hervé Jégou from CNRS/IRISA in France. It is called ANN_SIFT1B and its vectors have 
128 dimensions. The ANN_SIFT1B dataset contains a train file (called base set), 
a test set (called query set), and a neighbor set (called groundtruth), so that the 
dataset contains all information required by VectorDBBench. Yet, ANN_SIFT1B is only 
available in bvecs and ivecs formats, which is a binary format not compatible with 
VectorDBBench.

In order to use this dataset for our evaluation, we converted the bvecs and ivecs 
files into Parquet format. We split the train data into 1,000 different files, each with 
1M entries. Once the dataset is loaded into the database, we run a validation script 
which compares the entries of the bvecs file and the content from the database to 
make sure the conversation has worked and no vector got corrupted  
in the entire process.

Vector Indexes
Vector search is the capability of a database system to find vectors stored in 
the database that are closest (nearest neighbors) to the vector a user searches 
for (search vector). Due to the computational complexity of doing exact nearest 
neighbor search, most database systems rely on ANN search, which is a lot faster 
than exact search, but introduces some non-determinism in the search.

For implementing ANN search, specialized index types exist. The commands used 
for creating the vector indexes of the respective database systems are listed in the 
appendix of this document.

Workload Parameters
Vector Search performance can be looked at from various angles. Obviously, the 
classical database performance metrics of throughput (queries per second, QPS) 
and latency still exist. Yet, because ANN search is non-deterministic, these metrics 
should be considered in the context of the query’s recall,2 since low latency and high 
throughput is easier to achieve with less precise results.

In the scope of this study, the primary parameters affecting recall are nProbes 
for Couchbase and numCandidates for MongoDB respectively. Both parameters 
determine how intensely the index (and hence, the search space) shall be sampled to 
find those vectors closest to the search vector.

In our experiments, we apply several values to each of the parameters, e.g., 10, 50, 
and 100; and for each of values, we search for the maximum sustainable throughput 
by varying the number of concurrent clients. We start with a concurrency level of  
32 clients and increase it to 64, 128, 256, and 386. If a setup pushes the index  
nodes beyond an average CPU utilization of 90%, we do not evaluate the next  
higher configuration.

2 �Recall is the fraction of relevant instances that were retrieved from a query. VectorDBBench 
measures recall by counting how many of the k results returned from a query are contained in 
the first k elements of the neighbor list. It does not consider the order. 
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In this document, QPSmax denotes the highest throughput that was achieved for a 
specific value of nProbes/numCandidates. For each QPSmax, we also report the 
concurrency level that achieves it, the average query latency, and the 95th percentile 
of the query latency.

RESULTS

Case A: 100M With 768 Dimensions
For the 100M LAION dataset, we measured QPSmax and recall for different values 
of nProbes and numCandidates respectively. Figure 1 plots the results of this 
evaluation showing results for nProbes and numCandidates set as 10, 50, 70, 
and 100. As expected, the recall increases monotonically with higher values for 
nProbes and numCandidates (not shown in the plot).

The plot shows that QPSmax decreases when recall increases. This is to be expected 
as the amount of computational resources stays constant, while the computational 
effort required to come up with a response increases. For Couchbase, this results 
in a decrease in QPS from 22,856 QPS for a recall of 81% to 8,054 QPS for a recall of 
92% (-65%) and 4,316 QPS for a recall of 94% (-46% compared to a recall of 92%).

Figure 1. QPSmax per Recall for 100M Vectors
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For MongoDB, we see a similar decrease, yet with a lower baseline. For a recall of 
60% we can achieve 8,058 QPS. This further decreases to 4,660 QPS for a recall of 
80% and 3,410 QPS for a recall of 85% (-27% compared to a recall of 80%). 85% is the 
largest recall we could achieve for MongoDB in our experiments.

With respect to concurrent workloads and the overall throughput they generate, we 
can state that for MongoDB, we cannot achieve parallelism beyond 128 concurrent 
clients. For Couchbase, we are able to get up to 384 clients for most data points, and 
only have to go down to 256 with a recall of 94%.

Overall, the plot clearly shows that the Couchbase curve dominates the MongoDB 
curve. With a recall around 80% Couchbase outperforms MongoDB by almost a 
factor of five (22,856 QPS vs 4,660 QPS). With a recall of 94% Couchbase achieves 
25% higher QPS than MongoDB with a recall of 85%. 

Figure 2 shows the average latency per query and the 95th percentile (P95) of the 
query latency. The experiments represented by the data points are the same ones 
as shown in Figure 1. Hence, the MongoDB latency metrics at 60% recall were 
measured in the same run that led to the data point at 60% recall and 8,058 QPS with 
128 clients in Figure 1. Despite the fact that the primary goal of the evaluation is to 
find the maximum QPS both database systems expose an acceptable latency: even 
at 85% recall, MongoDB’s average latency is only 37 ms and its P95 69 ms. Yet, at 88% 
recall, Couchbase’s latency has barely exceeded 20 ms and its P95 is only at 43 ms. 
For larger recall levels, latency increases, but even at 94% recall, Couchbase remains 
well below 60 ms, while the P95 has barely exceeded 100 ms. Overall, the results in 
Figure 2 match the discussion about QPS.

Figure 2. P95 and Average Latency per Recall for 100M Vectors
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Case B: 1B With 128 Dimensions
For the SIFT dataset with 1 billion data points we measure QPSmax and recall for 
nProbes and numCandidates set to 10, 20, 50, and 100 respectively. Figure 3 
plots the results of this evaluation. 

For Couchbase, the results show a QPSmax of 19,057 QPS at a recall of 66%. With a 
recall of 77%, the achievable throughput is still 9,877 QPS (-48%), and 3,153 QPS 
with 88% recall (-68% compared to 77% recall). With 93% recall, still 703 QPS can be 
achieved (-78% compared to 88% recall). For MongoDB the results are disillusioning, 
as it is not able to reach a two-digit throughput for any of the configuration. The best 
throughput we were able to achieve is 6 QPS with 256 parallel clients at a 57% recall. 
With increasing recall, the throughput decreases even more: at 89% recall, it is only 2 
QPS with 64 parallel clients. This is the maximum recall that could be achieved with 
our methodology for MongoDB. 

Figure 3. QPSmax per Recall for 1B Vectors
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Figure 4 shows the relationship between recall and latency (average and P95). It 
seconds the results gained from Figure 3 showing that the average query latency for 
MongoDB is beyond 30 seconds for all levels of recalls considered in this evaluation. 
The P95 for MongoDB is above one minute in all cases except the one with the 
highest recall, where it is 40 seconds. The drop in latency visible for MongoDB when 
going from a recall of 73% to 84% to 89% is a consequence of using less concurrent 
clients for higher recalls, namely 256, 128, and 64 respectively.
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Figure 4. Latency P95 and Average Latency per Recall for 1B Vectors
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For Couchbase, both average latency and latency P95 increase when increasing 
the recall level. Yet, in all evaluations for Case B, the average latencies remain 
below 100ms, more than 300 times lower than MongoDB’s best result. The latency 
P95 increases up to 370ms for a recall of 94%, more than 100 times lower than 
MongoDB’s best result. 

Discussion
The evaluations for both Case A and Case B leave Couchbase as the clear winner 
of our comparison. In the following, we discuss insights and trends we can derive 
from comparing the results from both cases. Hence, this section is rather about 
comparing a single system’s performance between Case A and Case B instead of 
comparing them with each other. 

COUCHBASE
Recall: For both cases, we experience an increasing recall metric when increasing 
the nProbes parameter. While for Case A, the lowest recall we measured is 81% 
(nProbes = 10), it is only 66% for Case B. This behaviour can be explained with the 
difference sizes of the dataset; overall, sampling with nProbes = 10 turns out to be 
not sufficient for 1 billion data points. For nProbes = 100 the recall has aligned and 
both cases report very similar results (94% vs 93%).

Latency: The latencies for Couchbase develop unevenly, when moving from Case A 
to Case B. For the respective lower recall level (nProbes = 10) latencies are similar 
for both cases. For higher recalls (and values of nProbes respectively) there is an 
increase of more than 50% for average latency and more than a factor of two for 
latency P95. This is a consequence of using 10 times as many data points in Case 
B, which increases the index size: For Case A, large parts of the index can reside in 
memory, while the larger index for Case B only fits partially into memory. Therefore 
search queries over the larger dataset need to access disk more often for Case B, 
particularly, when more sampling is used (larger values of nProbes).
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Throughput: For both cases Couchbase starts off at around 20k QPS for nProbes 
= 10 and decreases for larger values of nProbes / higher recalls. Yet, the decrease 
is more significant for Case B for which the system can only sustain 700 QPS for 
nProbes = 100. In contrast, in Case A, Couchbase can sustain around 4.3 kQPS. 
This is an immediate consequence of the fact that for Case B the level of concurrency 
had to be lowered compared to Case A, which again is a consequence of the larger 
dataset and more frequent disk access. 

MONGODB
Recall: Also for MongoDB the recall increases with an increased numCandidates 
for both cases. Yet, the tendency is different compared to Couchbase. For MongoDB, 
Case B produces higher recall rates in all cases except for numCandidates = 10. 
For numCandidates = 100 in Case B it reaches 89% the highest value  
measured for MongoDB in all of our experiments. In Case A, it only achieves  
85% for this numCandidates.

Other metrics: A sincere comparison of the results of the other metrics is not 
possible as the results for MongoDB are tremendously worse for Case B: Throughput 
drops from several thousand QPS to a handful QPS and latency P95 skyrockets from 
sub-second to minutes. We suspect that this massive drop in performance happens, 
because MongoDB’s index grows so large for 1 billion data points that it does not 
fit into memory any more. This, in turn, requires search operations to go to disk, 
bringing the throughput to a halt.

CONCLUSIONS

In this paper we compared the vector search performance of Couchbase 8.0 with 
MongoDB 8.0. We used VectorDBBench, the defacto standard benchmarking suite 
for vector workloads, and ran it with two different datasets. The first dataset had 100 
million vectors with 768 dimensions each and the second dataset had one billion 
vectors with 128 dimensions each.

In the experiments, we varied the computational complexity for search queries which 
had an impact on the recall and the quality of the query results. For each recall, we 
then searched the number of parallel clients that achieved the largest throughput.

Based on the 100M dataset, Couchbase achieves higher throughput for all recall 
levels while maintaining higher recall and lower latency than MongoDB. For the 1B 
dataset, the performance of Couchbase only slightly degrades compared to the 
100M dataset, while MongoDB is no longer able to achieve any production-grade 
performance.
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APPENDIX

Command to create vector index

COUCHBASE
CREATE VECTOR INDEX `vector_index` on `database`(`emb` 
VECTOR) 

WITH {

“nodes”:[

“<node1>”,

“<node2>”,

“<node3>”,

“<node4>”,

],

“num_replica”:3,

“dimension”:<data set dimensions>,

“similarity”:”L2”,

“description”:”IVF200000,SQ4”,

“train_list”:1000000

}​

<data set dimensions>

•	 768 for Case A

•	 128 for Case B

Other parameters:

•	 index memory quota was set to 100GB

MONGODB
{

‘type’: ‘vectorSearch’,

‘fields’: [

{

‘type’: ‘vector’,

‘similarity’: ‘euclidean’,

‘numDimensions’: <data set dimensions>,
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‘path’: ‘vector’,

‘quantization’: ‘scalar’,

‘hnswOptions’: {‘maxEdges’: 32}

}]}​

<data set dimensions>

•	 768 for Case A

•	 128 for Case B



Modern customer experiences need a flexible database platform that can 
power applications spanning from cloud to edge and everything in between. 
Couchbase’s mission is to simplify how developers and architects develop, 
deploy and run modern applications wherever they are. We have reimagined 
the database with our fast, flexible and affordable cloud database platform 
Capella, allowing organizations to quickly build applications that deliver 
premium experiences to their customers – all with best-in-class price 
performance. More than 30% of the Fortune 100 trust Couchbase to power 
their modern applications. 

For more information, visit www.couchbase.com and follow us on X 
(formerly Twitter) @couchbase.

© 2025 Couchbase. All rights reserved.

https://www.couchbase.com
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