
WHITEPAPER

Comparing Vector Search
Capabilities of MongoDB and
Couchbase by Benchmarking

Using VectorDBBench

WHITEPAPER 2

Contents
INTRODUCTION	 3

BACKGROUND	 3

MongoDB	 3

Couchbase 	 4

METHODOLOGY	 5

Hardware Set-up	 5

Workload: VectorDBBench	 6

Evaluation Data Sets	 8

Vector Indexes	 8

Workload Parameters	 8

RESULTS		 9

Case A: 100M with 768 dimensions	 9

Case B: 1B with 128 dimensions	 11

Discussion	 13

CONCLUSIONS	 14

APPENDIX	 14

Command to create vector index	 14

WHITEPAPER 3

INTRODUCTION

The rapid adoption of machine learning, recommendation systems, and generative
AI has driven the need for databases capable of efficiently storing and querying high-
dimensional embeddings (vectors). These embeddings represent unstructured data
such as images, audio, or text in numeric form and enable similarity-based retrieval
through vector search operations. As database vendors increasingly integrate
Approximate Nearest Neighbor (ANN) algorithms directly into their data engines, the
question arises how well these emerging implementations perform in practice.

This report presents a data-driven evaluation of the vector search capabilities
of Couchbase and MongoDB™. Both systems have recently introduced native
support for vector indexes and ANN-based search operations but differ
substantially in their architectural designs and index strategies. The goal of this
study is to quantify and compare their performance characteristics under controlled
and reproducible conditions.

The benchmarking experiments were conducted using VectorDBBench, a widely
adopted open source benchmarking framework for vector databases. All workloads
were executed on hardware-equivalent configurations, using both standard and
large-scale datasets (100M and 1B vectors) to assess scalability and performance
across different recall levels. The benchmark focuses on key performance indicators
such as throughput (queries per second) and latency at different recall levels.

By systematically comparing these systems across multiple workloads and dataset
sizes, this study aims to provide a transparent and reproducible analysis of how each
database performs in real-world vector search scenarios, thereby offering valuable
insights for practitioners evaluating vector search capabilities.

BACKGROUND

MongoDB
MongoDB is a popular NoSQL database that stores data in JSON-like documents
organized into collections. Natively, MongoDB comes with its MongoDB query
language (formerly known as MQL) to run operations against the database. In a
nutshell, in clustered set ups MongoDB uses a primary-secondary approach where
all inserts and updates have to go through the primary and are asynchronously
synced with the secondaries via the oplog. Normally, a MongoDB cluster consists of
one primary and two secondaries or multiples thereof (sharded setup).

For running vector workloads, users are required to use one or more additional
search nodes within the clusters. The task of these search nodes is to store a vector
index. According to MongoDB, scaling out the number of search nodes is the
primary mechanism to achieve higher throughput.

https://www.mongodb.com/docs/atlas/atlas-vector-search/benchmark/overview/#concurrency

WHITEPAPER 4

MongoDB uses the Hierarchical Navigable Small Worlds (HNSW) algorithm and
index structures for ANN. MongoDB supports two main parameters for creating the
index. maxEdges defines the maximum number of edges that a node in the index
can have in the HNSW graph. numEdgeCandidates controls the maximum number
of nodes to evaluate to find the closest neighbors to connect to a new node. In this
evaluation, we use the default maxEdges = 32 and numEdgeCandidates = 100.
The command we use to create the index is shown in the annex of this document.

For querying the database, alongside the number of items to return (limit) and
the query vector, MongoDB requires the numCandidates parameter. It defines
the number of nearest neighbors used in the search, allowing a trade off between
latency and recall.

Couchbase
Couchbase is a distributed NoSQL database that stores data in JSON documents
organized into scopes and collections. It uses SQL++ for querying and a shared-
nothing architecture where all nodes can serve reads and writes, with indexing,
search, and analytics as separate services.

For vector workloads, Couchbase supports vector search which builds on
Couchbase’s Search Service and provides vector index support. Vector search
supports the following three index types:

•	 Hyperscale vector indexes – Powered by the Index Service, this is optimized for
pure vector searches at scale (billions of vectors). They provide high accuracy even
with large dimensions, a low-memory footprint, and support concurrent inserts
and queries.

•	 Composite vector indexes – Combines a vector column with scalar fields. Useful
when queries need to filter on scalar attributes (e.g., genre, location, supplier)
before running a similarity search.

•	 Search vector indexes – Introduced in version 7.6, this index can pair vectors
with full-text search (FTS) and geospatial search. It enables hybrid queries that mix
semantic, text, and location filters.

In this evaluation, we use Couchbase’s hyperscale vector indexes. Hyperscale vector
indexes have two major parameters to control index creation: nlist defines the
number of Voronoi cells the index uses. Each cell is represented by its centroid. For
our experiments, we use nlist = 200_000. We also use train_list = 100_000
which controls the number of vectors that Couchbase considers when training for
centroids in the dataset.

Quantization simplifies vector data so it consumes less space in memory and on disk.
Couchbase supports product and scalar quantization. It is a parameter to be set for
index creation. For this report, we use SQ4 scalar quantization which maps floating
point values to low-dimensional (4-bit) integers.

WHITEPAPER 5

When using hyperscale vector indexes, vector search first identifies the centroid
vector closest to the query vector. It then uses the nprobe parameter to
search neighboring Voronoi cells closest to the centroid and returns the top k
number of vectors. In our experiments, we vary nprobe to trade off between latency
and recall.

METHODOLOGY

The following sections describe the methodology we used for running the
experiments. This includes the hardware and software configurations, the applied
benchmark and the selected dataset used for this evaluation.

Hardware Setup
At the time of the evaluation, Couchbase’s vector support was not enabled in
Couchbase Capella™. For this reason, the Couchbase clusters used in this evaluation
are deployed on AWS EC2 virtual machines. We use Couchbase Enterprise version
8.0.0-3444, which is a prerelease. For MongoDB, we rely on MongoDB’s Atlas cloud
service to ensure we have access to a solid MongoDB installation with all recent
enterprise features. We use MongoDB version 8.0 for the evaluation at hand.

The hardware setup for both competitors is equivalent. The exact hardware
specifications are shown in Table 1. In addition to hardware required to run the
database systems, we use one further AWS EC2 virtual machine of type r7i.8xlarge
(32 vCores, 256GB RAM) to run the client-side workload.

Table 1. Hardware setup for MongoDB and Couchbase installations

Data Nodes Index/Query
Nodes Version

MongoDB

M80 replica set Three
nodes, each with
 32 vCores
 128GB RAM
 750GB storage

4 x high-CPU S80
each with
 64 vCores
 128GB RAM
 3.2GB NVMe
storage

v8.0 on MongoDB
Atlas @AWS

Couchbase

3xm6gd.8xlarge
each with:
 32 Graviton2 cores,
 128GB RAM
 1.9TB NVMe storage

4xc8gd.16xlarge
each with:
 64 Graviton2
cores,
 128GB RAM
 2x1.9TB NVMe
storage

Couchbase
Enterprise 8.0.0-
3444
@AWS EC2

WHITEPAPER 6

In the case of Couchbase, all nodes are deployed in the same availability zone,
including the machine running the client-side workload. In the case of MongoDB,
the distribution of cluster nodes across availability zones can neither be controlled
nor retrieved. Hence, we cannot place the workload machine in a specific availability
zone. The option for the closest possible placement is to use the same region as the
database cluster, which is what we did.

Even though the cluster setup targets hardware equality for both data nodes and
index nodes, their cloud costs are similar as well: The AWS EC2 infrastructure
required to run Couchbase costs $19.73224/h. In contrast, MongoDB charges
$25.33/h for the Atlas cluster that was used.

Workload: VectorDBBench
For measuring vector search performance, a benchmark suite that simulates
realistic vector search use cases is required. With the rise of vector databases,
several open source vector search benchmark suites have been released.
VectorDBBench has gained much traction and is considered the current defacto
standard in vector database benchmarking. This study uses the VectorDBBench
version 1.0.6.1

VectorDBBench supports four modes of operation: (i) The capacity mode iteratively
loads an ever-increasing number of data points/rows into the database until a
predefined insert timeout threshold is violated. (ii) The search mode evaluates four
different operation types, each of which produces its own set of metrics/results. The
majority of operation types query the database content for test vectors in order to
measure the performance of the database system. Some also measure the quality
of the results. (iii) The filtering search mode resembles the search mode, but uses
additional filters (i.e., WHERE clause) in the queries. (iv) Finally, the newly introduced
streaming mode measures the search performance while maintaining a constant
insertion workload.

For the evaluation at hand, we make use of the search mode.

DATASETS
VectorDBBench ships with different datasets that are available to its users out of the
box. More precisely, the documentation distinguishes between four types of datasets
ranging from xlarge (up to 100M data points) to small (up to 100K data points).

In addition, VectorDBBench allows users to define a custom dataset as long as
the data is available in a set of files that follow a specific format and naming
schema. VectorDBBench uses three different files that all need to be available
in a Parquet format:

•	 The train.parquet file contains the dataset to be loaded into the database. The
entries in the file contain an identifier (id) and an embedding (emb) with the latter
being the actual vector.

1 �At the time of writing, the current version was VectorDBBench 1.0.6.

https://benchant.com/blog/benchmarking-suites#vector-benchmarking
https://github.com/zilliztech/VectorDBBench/

WHITEPAPER 7

•	 The test.parquet file contains the (test) queries to issue against the
database. Each entry comes with an identifier (id) and the search vector (emb).
VectorDBBench issues all vectors from that file against the database. All datasets
that ship with VectorDBBench contain 1,000 entries in that file.

•	 The neighbor.parquet file contains the sample solution for each vector. Each
entry references the query identifier (id) and contains the ids of the vectors
closest to the search query (neighbors_id) in descending order. For example,
neighbor_id[0] is closer to the search query than neighbor_id[20].

SEARCH MODE OPERATIONS AND METRICS
The search mode performs four operations types which produce the following
metrics:

1.	During the load operation, all data from a selected dataset is ingested into the
database. In all bindings provided by VectorDBBench, this is done with a single
client (1 thread/process) in batches of a configurable size. For this evaluation, we
updated the bindings for MongoDB and Couchbase to support parallel inserts. The
primary metric VectorDBBench reports for the load operation is the load time.

2.	In the optimize operation, the binding is allowed to perform an arbitrary set of
steps to optimize the database for later query phases. This may include flushing
segments, (re-)building an index, and other database-specific steps. Obviously,
different bindings (databases) apply different means of optimization during this
step. The primary metric VectorDBBench reports for the optimize step is the
optimization time.

3.	In the concurrent search operation, a certain number of clients (threads/processes)
concurrently query the database for vectors leading to kNN or ANN queries. The
number of parallel clients to use is configurable and we vary it in this evaluation.
Similarly, k, the number of nearest neighbors to be returned by a query can be
configured. We use the default, k = 10. The primary metric VectorDBBench
reports for the concurrent query step is throughput (queries per second) per
concurrency level. Recently, it also began reporting different latency metrics,
including P95, P99, and average.

4.	In the serial search operation a single process queries the database for a set
of test vectors. In addition to measuring latencies, this step also evaluates the
query results and compares them to the ideal result set provided through the
neighbor.parquet file. For serial search, VectorDBBench reports different
latency metrics as well as recall, which captures the quality of the results based on
the comparison with the ideal result set.

Evaluation Datasets
For the evaluation in this paper we use two different datasets: Case A uses the LAION
100M dataset that ships with VectorDBBench. The dataset contains 100 million data
points with 768 dimensions each. Case B aims at a larger dataset that contains 1
billion data points. Unfortunately, VectorDBBench does not ship datasets of this
size. Their largest dataset category, xlarge, covers datasets with 100 million (100M)
vectors.

WHITEPAPER 8

A dataset with 1 billion elements was released in 2010 by Laurent Amsaleg and
Hervé Jégou from CNRS/IRISA in France. It is called ANN_SIFT1B and its vectors have
128 dimensions. The ANN_SIFT1B dataset contains a train file (called base set),
a test set (called query set), and a neighbor set (called groundtruth), so that the
dataset contains all information required by VectorDBBench. Yet, ANN_SIFT1B is only
available in bvecs and ivecs formats, which is a binary format not compatible with
VectorDBBench.

In order to use this dataset for our evaluation, we converted the bvecs and ivecs
files into Parquet format. We split the train data into 1,000 different files, each with
1M entries. Once the dataset is loaded into the database, we run a validation script
which compares the entries of the bvecs file and the content from the database to
make sure the conversation has worked and no vector got corrupted
in the entire process.

Vector Indexes
Vector search is the capability of a database system to find vectors stored in
the database that are closest (nearest neighbors) to the vector a user searches
for (search vector). Due to the computational complexity of doing exact nearest
neighbor search, most database systems rely on ANN search, which is a lot faster
than exact search, but introduces some non-determinism in the search.

For implementing ANN search, specialized index types exist. The commands used
for creating the vector indexes of the respective database systems are listed in the
appendix of this document.

Workload Parameters
Vector Search performance can be looked at from various angles. Obviously, the
classical database performance metrics of throughput (queries per second, QPS)
and latency still exist. Yet, because ANN search is non-deterministic, these metrics
should be considered in the context of the query’s recall,2 since low latency and high
throughput is easier to achieve with less precise results.

In the scope of this study, the primary parameters affecting recall are nProbes
for Couchbase and numCandidates for MongoDB respectively. Both parameters
determine how intensely the index (and hence, the search space) shall be sampled to
find those vectors closest to the search vector.

In our experiments, we apply several values to each of the parameters, e.g., 10, 50,
and 100; and for each of values, we search for the maximum sustainable throughput
by varying the number of concurrent clients. We start with a concurrency level of
32 clients and increase it to 64, 128, 256, and 386. If a setup pushes the index
nodes beyond an average CPU utilization of 90%, we do not evaluate the next
higher configuration.

2 �Recall is the fraction of relevant instances that were retrieved from a query. VectorDBBench
measures recall by counting how many of the k results returned from a query are contained in
the first k elements of the neighbor list. It does not consider the order.

WHITEPAPER 9

In this document, QPSmax denotes the highest throughput that was achieved for a
specific value of nProbes/numCandidates. For each QPSmax, we also report the
concurrency level that achieves it, the average query latency, and the 95th percentile
of the query latency.

RESULTS

Case A: 100M With 768 Dimensions
For the 100M LAION dataset, we measured QPSmax and recall for different values
of nProbes and numCandidates respectively. Figure 1 plots the results of this
evaluation showing results for nProbes and numCandidates set as 10, 50, 70,
and 100. As expected, the recall increases monotonically with higher values for
nProbes and numCandidates (not shown in the plot).

The plot shows that QPSmax decreases when recall increases. This is to be expected
as the amount of computational resources stays constant, while the computational
effort required to come up with a response increases. For Couchbase, this results
in a decrease in QPS from 22,856 QPS for a recall of 81% to 8,054 QPS for a recall of
92% (-65%) and 4,316 QPS for a recall of 94% (-46% compared to a recall of 92%).

Figure 1. QPSmax per Recall for 100M Vectors

Recall

Q
PS

0

5,000

10,000

15,000

20,000

25,000

50% 60% 70% 80% 90% 100%

MongoDB Couchbase

WHITEPAPER 10

For MongoDB, we see a similar decrease, yet with a lower baseline. For a recall of
60% we can achieve 8,058 QPS. This further decreases to 4,660 QPS for a recall of
80% and 3,410 QPS for a recall of 85% (-27% compared to a recall of 80%). 85% is the
largest recall we could achieve for MongoDB in our experiments.

With respect to concurrent workloads and the overall throughput they generate, we
can state that for MongoDB, we cannot achieve parallelism beyond 128 concurrent
clients. For Couchbase, we are able to get up to 384 clients for most data points, and
only have to go down to 256 with a recall of 94%.

Overall, the plot clearly shows that the Couchbase curve dominates the MongoDB
curve. With a recall around 80% Couchbase outperforms MongoDB by almost a
factor of five (22,856 QPS vs 4,660 QPS). With a recall of 94% Couchbase achieves
25% higher QPS than MongoDB with a recall of 85%.

Figure 2 shows the average latency per query and the 95th percentile (P95) of the
query latency. The experiments represented by the data points are the same ones
as shown in Figure 1. Hence, the MongoDB latency metrics at 60% recall were
measured in the same run that led to the data point at 60% recall and 8,058 QPS with
128 clients in Figure 1. Despite the fact that the primary goal of the evaluation is to
find the maximum QPS both database systems expose an acceptable latency: even
at 85% recall, MongoDB’s average latency is only 37 ms and its P95 69 ms. Yet, at 88%
recall, Couchbase’s latency has barely exceeded 20 ms and its P95 is only at 43 ms.
For larger recall levels, latency increases, but even at 94% recall, Couchbase remains
well below 60 ms, while the P95 has barely exceeded 100 ms. Overall, the results in
Figure 2 match the discussion about QPS.

Figure 2. P95 and Average Latency per Recall for 100M Vectors

Recall

La
te

nc
y

[m
s]

0

25

50

75

100

125

50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

MongoDB - P95 Couchbase - P95 MongoDB - Avg Couchbase - Avg

WHITEPAPER 11

Case B: 1B With 128 Dimensions
For the SIFT dataset with 1 billion data points we measure QPSmax and recall for
nProbes and numCandidates set to 10, 20, 50, and 100 respectively. Figure 3
plots the results of this evaluation.

For Couchbase, the results show a QPSmax of 19,057 QPS at a recall of 66%. With a
recall of 77%, the achievable throughput is still 9,877 QPS (-48%), and 3,153 QPS
with 88% recall (-68% compared to 77% recall). With 93% recall, still 703 QPS can be
achieved (-78% compared to 88% recall). For MongoDB the results are disillusioning,
as it is not able to reach a two-digit throughput for any of the configuration. The best
throughput we were able to achieve is 6 QPS with 256 parallel clients at a 57% recall.
With increasing recall, the throughput decreases even more: at 89% recall, it is only 2
QPS with 64 parallel clients. This is the maximum recall that could be achieved with
our methodology for MongoDB.

Figure 3. QPSmax per Recall for 1B Vectors

0

5,000

10,000

15,000

20,000

25,000

50% 60% 70% 80% 90% 100%

MongoDB Couchbase

Figure 4 shows the relationship between recall and latency (average and P95). It
seconds the results gained from Figure 3 showing that the average query latency for
MongoDB is beyond 30 seconds for all levels of recalls considered in this evaluation.
The P95 for MongoDB is above one minute in all cases except the one with the
highest recall, where it is 40 seconds. The drop in latency visible for MongoDB when
going from a recall of 73% to 84% to 89% is a consequence of using less concurrent
clients for higher recalls, namely 256, 128, and 64 respectively.

WHITEPAPER 12

Figure 4. Latency P95 and Average Latency per Recall for 1B Vectors

Recall
La

te
nc

y
[s

]
0

25

50

75

100

125

50% 60% 70% 80% 90% 100%

MongoDB - P95 Couchbase - P95 MongoDB - Avg Couchbase - Avg

For Couchbase, both average latency and latency P95 increase when increasing
the recall level. Yet, in all evaluations for Case B, the average latencies remain
below 100ms, more than 300 times lower than MongoDB’s best result. The latency
P95 increases up to 370ms for a recall of 94%, more than 100 times lower than
MongoDB’s best result.

Discussion
The evaluations for both Case A and Case B leave Couchbase as the clear winner
of our comparison. In the following, we discuss insights and trends we can derive
from comparing the results from both cases. Hence, this section is rather about
comparing a single system’s performance between Case A and Case B instead of
comparing them with each other.

COUCHBASE
Recall: For both cases, we experience an increasing recall metric when increasing
the nProbes parameter. While for Case A, the lowest recall we measured is 81%
(nProbes = 10), it is only 66% for Case B. This behaviour can be explained with the
difference sizes of the dataset; overall, sampling with nProbes = 10 turns out to be
not sufficient for 1 billion data points. For nProbes = 100 the recall has aligned and
both cases report very similar results (94% vs 93%).

Latency: The latencies for Couchbase develop unevenly, when moving from Case A
to Case B. For the respective lower recall level (nProbes = 10) latencies are similar
for both cases. For higher recalls (and values of nProbes respectively) there is an
increase of more than 50% for average latency and more than a factor of two for
latency P95. This is a consequence of using 10 times as many data points in Case
B, which increases the index size: For Case A, large parts of the index can reside in
memory, while the larger index for Case B only fits partially into memory. Therefore
search queries over the larger dataset need to access disk more often for Case B,
particularly, when more sampling is used (larger values of nProbes).

WHITEPAPER 13

Throughput: For both cases Couchbase starts off at around 20k QPS for nProbes
= 10 and decreases for larger values of nProbes / higher recalls. Yet, the decrease
is more significant for Case B for which the system can only sustain 700 QPS for
nProbes = 100. In contrast, in Case A, Couchbase can sustain around 4.3 kQPS.
This is an immediate consequence of the fact that for Case B the level of concurrency
had to be lowered compared to Case A, which again is a consequence of the larger
dataset and more frequent disk access.

MONGODB
Recall: Also for MongoDB the recall increases with an increased numCandidates
for both cases. Yet, the tendency is different compared to Couchbase. For MongoDB,
Case B produces higher recall rates in all cases except for numCandidates = 10.
For numCandidates = 100 in Case B it reaches 89% the highest value
measured for MongoDB in all of our experiments. In Case A, it only achieves
85% for this numCandidates.

Other metrics: A sincere comparison of the results of the other metrics is not
possible as the results for MongoDB are tremendously worse for Case B: Throughput
drops from several thousand QPS to a handful QPS and latency P95 skyrockets from
sub-second to minutes. We suspect that this massive drop in performance happens,
because MongoDB’s index grows so large for 1 billion data points that it does not
fit into memory any more. This, in turn, requires search operations to go to disk,
bringing the throughput to a halt.

CONCLUSIONS

In this paper we compared the vector search performance of Couchbase 8.0 with
MongoDB 8.0. We used VectorDBBench, the defacto standard benchmarking suite
for vector workloads, and ran it with two different datasets. The first dataset had 100
million vectors with 768 dimensions each and the second dataset had one billion
vectors with 128 dimensions each.

In the experiments, we varied the computational complexity for search queries which
had an impact on the recall and the quality of the query results. For each recall, we
then searched the number of parallel clients that achieved the largest throughput.

Based on the 100M dataset, Couchbase achieves higher throughput for all recall
levels while maintaining higher recall and lower latency than MongoDB. For the 1B
dataset, the performance of Couchbase only slightly degrades compared to the
100M dataset, while MongoDB is no longer able to achieve any production-grade
performance.

WHITEPAPER 14

APPENDIX

Command to create vector index

COUCHBASE
CREATE VECTOR INDEX `vector_index` on `database`(`emb`
VECTOR)

WITH {

“nodes”:[

“<node1>”,

“<node2>”,

“<node3>”,

“<node4>”,

],

“num_replica”:3,

“dimension”:<data set dimensions>,

“similarity”:”L2”,

“description”:”IVF200000,SQ4”,

“train_list”:1000000

}​

<data set dimensions>

•	 768 for Case A

•	 128 for Case B

Other parameters:

•	 index memory quota was set to 100GB

MONGODB
{

‘type’: ‘vectorSearch’,

‘fields’: [

{

‘type’: ‘vector’,

‘similarity’: ‘euclidean’,

‘numDimensions’: <data set dimensions>,

WHITEPAPER 15

‘path’: ‘vector’,

‘quantization’: ‘scalar’,

‘hnswOptions’: {‘maxEdges’: 32}

}]}​

<data set dimensions>

•	 768 for Case A

•	 128 for Case B

Modern customer experiences need a flexible database platform that can
power applications spanning from cloud to edge and everything in between.
Couchbase’s mission is to simplify how developers and architects develop,
deploy and run modern applications wherever they are. We have reimagined
the database with our fast, flexible and affordable cloud database platform
Capella, allowing organizations to quickly build applications that deliver
premium experiences to their customers – all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power
their modern applications.

For more information, visit www.couchbase.com and follow us on X
(formerly Twitter) @couchbase.

© 2025 Couchbase. All rights reserved.

https://www.couchbase.com

	INTRODUCTION
	Background
	MongoDB
	Couchbase

	Methodology
	Hardware Set-up
	Workload: VectorDBBench
	Evaluation Data Sets
	Vector Indexes
	Workload Parameters

	Results
	Case A: 100M with 768 dimensions
	Case B: 1B with 128 dimensions
	Discussion

	Conclusions
	Appendix
	Command to create vector index

